Electrical Modeling and Simulation Challenges for High-end Microprocessor Systems

Stefano Grivet-Talocia

Dept. Electronics and Telecommunications, Politecnico di Torino, Italy

with contributions from: Antonio Carlucci, Tommaso Bradde, Alessandro Moglia

Acknowledgement: Intel Strategic Research Segment (SRS) Grant 2022-24

6th generation Intel Xeon processor (2024)

IC package from AMD, see packaging-benchmarks.org/

ET 2025, 12-13 June 2025

Electrical modeling: the Power Integrity problem

Power Delivery Network: system level view

Voltage droops must be kept within limits

PI verification:

Very long transient simulations

System-level, all parts must be considered Different excitation patterns (chip activity)

Electrical modeling: the Power Integrity problem

A simplistic PDN model...

Electrical modeling: the Power Integrity problem

Electrical modeling: the Power Integrity problem

Power Delivery Network: the real structure

Feature size

Modeling challenges: multiscale, huge complexity, heterogeneous, interconnected, linear?

Fully Integrated Voltage Regulators (FIVRs)

Fully Integrated Voltage Regulators (FIVRs)

Multiphase buck converters

At the chip-package interface

One for each CPU core

Courtesy: Kaladhar Radhakrishnan, Intel

System-level PDN with FIVRs

Structure

- Board/package PDN: large-scale LTI subsystem
- Die subsystem (+inductors): many identical models
- FIVR switches: one (multiphase block) per core

Compensator steers duty cycle d to regulate load voltage v^o

Averaged switch model

OK for system-level

Nonlinear: *d* is a variable

ET 2025, 12-13 June 2025

- Problem 1: generate simulation models for all system parts
 - Linear interconnect subsystems, fully coupled, many ports
 - Require Maxwell equation solvers, full-wave, frequency-domain → S-parameters
 - S-parameters \rightarrow simulation models (SPICE): Vector Fitting + Passivity Enforcement
 - Issue: scalability with number of ports, inconsistency of field solver results
- Problem 2: interconnection of linear macromodels. Simple?
 - Interconnected system still too large (HSPICE fails)
 - Loading conditions may trigger sensitivity and error magnification
- Problem 3: multiple feedback with controllers and FIVR switches
 - Combined with overall complexity, leads to intractable system

Building individual models: Vector Fitting

Geometry, materials

Extraction

Macromodel

 $\dot{x} = Ax + Bu$

y = Cx + Du

Rational fitting Passivity enforcement Realization or synthesis

$$S(s) = R_0 + \sum_{i=1}^{\nu} \frac{R_i}{s - p_i}$$

A simple 10-port PDN example

ET 2025, 12-13 June 2025

Compressed macromodeling

Scattering tensor from solver

Ports: $P \sim 10^3$

Freqs: $K \sim 10^4$

Basis: $\rho \sim 100$

Reshaped tensor

SVD (randomized, constrained real)

$$S_{ij}(s) \approx \sum_{\ell} \alpha_{ij;\ell} \phi_{\ell}(s)$$
 — Vector Fitting applied only to $\phi_{\ell}(j\omega)$

A-priori error bounds!

S. B. Olivadese and S. Grivet-Talocia, "Compressed passive macromodeling," IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 2, pp. 1378–1388, August 2012.

M. De Stefano, T. Wendt, C. Yang, S. Grivet-Talocia, and C. Schuster, "Regularized and compressed large-scale rational macromodeling: Theory and application to energy-selective shielding enclosures," IEEE Transactions on Electromagnetic Compatibility, vol. 64, pp. 1365–1379, Oct. 2022.

Sensitivity

Standard VF flow

Input data (from solver)

$$\hat{S}_k = \hat{S}(j\omega_k)$$

Rational macromodel

$$S(s) = R_0 + \sum_{i=1}^{\nu} \frac{R_i}{s - p_i} = \frac{n(s)}{d(s)}$$

Fitting condition

$$S(j\omega_k) \approx \hat{S}_k$$

Target transfer function

$$Y_{out}(s) = H(s)U_{in}(s)$$

This should be accurate!

Solution: modified VF cost function

$$\sum_{k=1}^{K} \left\| n(j\omega_k) - d(j\omega_k) \hat{S}(j\omega_k) \right\|^2 + \lambda \cdot \sum_{k=1}^{K} \left\| n(j\omega_k) \hat{U}(j\omega_k) - d(j\omega_k) \hat{Y}(j\omega_k) \right\|^2$$

Sensitivity: an example

Accurate S-parameter model...

...but error magnification occurs in basic VF

A. Carlucci, T. Bradde, and S. Grivet-Talocia, "Addressing load sensitivity of rational macromodels," *IEEE Transactions on Components, Packaging and Manufacturing Technology*, vol. 13, pp. 1591–1602, Oct 2023.

Sensitivity: another example

A. Carlucci, T. Bradde, and S. Grivet-Talocia, "Addressing load sensitivity of rational macromodels," *IEEE Transactions on Components, Packaging and Manufacturing Technology*, vol. 13, pp. 1591–1602, Oct 2023.

More on sensitivity...

For low-loss and resonant interconnects...

$$\sigma(S(j\omega)) \lesssim 1$$
 singular values

$$Z = R_0^{\frac{1}{2}} (I - S)^{-1} (I + S) R_0^{\frac{1}{2}}$$

$$Y = R_0^{-\frac{1}{2}} (I - S)(I + S)^{-1} R_0^{-\frac{1}{2}}$$

This condition triggers sensitivity: small error on S leads to large error on Z

More on sensitivity... and non-causal data from solvers

Handling Complexity: Structured Model Order Reduction

Collect all LTI blocks

$$\begin{cases} E \dot{x} = A x + B u \\ y = C x + D u \end{cases}$$

Petrov-Galerkin projection

$$\hat{A} = W^T$$

$$A$$

Typical compression ratio $\sim 100:1$

A. Carlucci, S. Grivet-Talocia, S. Kulasekaran, and K. Radhakrishnan, "Structured model order reduction of system-level power delivery networks," IEEE Access, vol. 12, pp. 18198–18214, 2024.

Building projection matrices

Projection matrix V

Small-signal state responses

Structured Model Order Reduction

HSPICE fails here!

A. Carlucci, S. Grivet-Talocia, S. Kulasekaran, and K. Radhakrishnan, "Structured model order reduction of system-level power delivery networks," IEEE Access, vol. 12, pp. 18198–18214, 2024.

Parallel transient simulation

Fully coupled simulation

Domain decomposition with local (weak) coupling

WR Iteration

Solved by parallel threads

Update of coupling sources

ET 2025, 12-13 June 2025

Parallel transient simulation

Optimized serial solver: <10s

A. Moglia, A. Carlucci, S. Grivet-Talocia, S. Kulasekaran, and K. Radhakrishnan, "Fast transient simulation of system-level power delivery networks via parallel waveform relaxation," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 15, pp. 39–53, Jan 2025.

Thank you

