

(XXIX Riunione Annuale dei Ricercatori di Elettrotecnica

Experimental Evaluation of Wireless Charging Systems: the DEXTER Project

Giulia Di Capua

Department of Electrical and Information Engineering "Maurizio Scarano" University of Cassino and Southern Lazio

Progetto DEXTER

finanziato dall'Unione europea –
NextGenerationEU – Piano Nazionale
Resistenza e Resilienza (PNRR) – Missione 4
Componente 2 Investimento 1.4 –
Progetto CN_00000023 denominato
Sustainable Mobility Center (MOST)

Development of an Enhanced experimental proTotype of wirEless chargeR

Wireless Power Transfer Systems: powertrain architecture

Wireless Power Transfer Systems Challenges

- Coils design and performance characterization (mutual inductance)
- Compensation topologies (series/parallel/hybrid)
- Power electronics design and system's performance management (power/efficiency trade-off, energy/charge transfer rating)
- EM field analysis and limitations (coils geometries, ferrites-based shielding, weight trade-off)
- EM shields design and arrangement (resonant coils' arrays)
- Battery Architecture and Management (charge/discharge patterns, SoC, SoH)
- Behavioral Modeling (design-oriented/performance-oriented modeling)

DEXTER Project

GOAL: Developing a Dynamic Wireless Power Transfer (DWPT) prototyping platform for Electric Vehicle Dynamic Battery Chargers (EV-DBCs).

SYSTEM ARCHITECTURE: The platform integrates a **3D movement system** of the coils, two digitally-controlled **power electronics units**, a **battery emulator**, a set of **shielding coils**, a **field measurement probe**, and a **control panel**.

FEATURES: Hardware-in-the-Loop (HiL) design process, integration of simulations and measurements for multi-objective characterization and optimization, testing of different solutions in terms of coil pairs, shielding coils, power electronics control settings, device-level and system-level behavioral modeling.

DEXTER team

WP.#	WP.NAME	UNICAS	UNIPI	UNISA
1	Prototype and power electronics	contributor		
2	Coils and field modeling	(contributor	contributor
3	Electromagnetic Shields Modeling and Design			contributor
4	Prototype assembly and validation	contributor	contributor	leader

DEXTER schedule:

July 1st, 2024 – February 28th, 2025 (extended to June 30th 2025)

UNICAS: coils analysis and design

coils and ferrites optimization

Ansys Maxwell 3D simulations

mutual inductance modeling

model validation

UNIPI: shielding analysis and design

UNISA: power electronics and system-level analysis and design

$$I_{1,ref} = \frac{4V_{in}}{\pi R_1} \frac{n_{i \max} \left(1 + \sqrt{1 + m_{av}}\right)}{\left(1 + m_{pk} + \sqrt{1 + m_{av}}\right)} = I_{1,opt}$$

DEXTER prototype @ the UNISA Power Electronics Laboratory

electronics

RX mover

RX coil

DEXTER prototype: power train

battery emulator

3D RX mover

TX power electronics

RX coil

shielding coils

DEXTER prototype: control and system management

3D mover

DEXTER experiments: automatized mutual inductance mapping

$$M(x,y) = \frac{\left| \overline{V}_{2,open}(x,y) \right|}{2\pi f I_1}$$

Experimetal results

DEXTER experiments: field measurements

DEXTER experiments: automatized resonance frequency detection

Collaborative research and education opportunities

RESEARCH:

- coils, shielding, power electronics, control modeling and design validation
- battery modeling and validation in static and dynamic WPT charging
- device-level to system-level performance characterization and optimization

EDUCATION:

- seminars/classes
- training-on-the-job
- master/PhD thesis

DEXTER deadline: June 30th 2025

DEXTER: dissemination initiatives

The DEXTER Team

- **UNICAS**
- 📌 Giulia Di Capua (PI)
- Antonio Maffucci
- 🖈 Gennaro Di Mambro
- **W** UNISA
- Nicola Femia
- Luca De Guglielmo partnership EXELING s.r.l.
- Munzio Oliva partnership EXELING s.r.l.
- **W** UNIPI
- Nunzia Fontana
- 🖈 Sami Barmada
- Junda Zhu

XXXIX Riunione Annuale dei Ricercatori di Elettrotecnica

Thank you for your attention

Giulia Di Capua

Department of Electrical and Information Engineering "Maurizio Scarano" University of Cassino and Southern Lazio

